LESSON PLAN OF 3RD SEMESTER(2023-24) CIVIL ENGINEERING

Discipline :-	Semester:-3 RD	Name of the Teaching Faculty
CIVIL ENGG.		PRIYABRATA TRIPATHY
Subject:-	No of Days/per	Semester From:- 01/08/23 To:- 30/11/23
STRUCTURAL	Week Class Allotted	
MECHANICS	:-04	No of Weeks:- 18
(TH-1)		
Week	Class Day	Theory/ Practical Topics
1 st	1° ¹	1.1 Basic Principle of Mechanics: Force, Moment, support conditions,
	2 nd	Conditions of equilibrium, C.G & MI, Free body diagram
	3 rd	1.2 Review of CG and MI of different sections
	4 th	2.1 Simple Stresses and Strains Introduction to stresses and strains: Mechanical properties of materials – Rigidity, Elasticity Plasticity, Compressibility,
2 nd	1 st	Hardness, Toughness, Stiffness, Brittleness, Ductility, Malleability, Creep, Fatigue, Tenacity Durability
	2 nd	Types of stresses -Tensile, Compressive and Shear stresses, Types of strains - Tensile Compressive and Shear strains,
	3 rd	Complimentary shear stress - Diagonal tensile / compressive Stresses due to shear Elongation and Contraction, Longitudinal and Lateral strains
	4 th	Poisson's ratio, change in dimensions and volume etc, Volumetric strain
	1 ^{5t}	computation of stress, strain
3 rd	2 nd	, Hooke's law - Elastic Constants Elastic limit derivation of relation between elastic constants
	3 rd	, 2.2 Application of simple stress and strain in engineering field: Behaviour of ductile and brittle materials under direct loads,
	4 th	Stress Strain curve of a ductile material,
4 th	1 st	Limit of proportionality Derivation of relationship between the elastic Percentage elongation, Percentage reduction in area,
	2 nd	Significance of percentage elongation and reduction in area of cross section, Deformation of
	3 rd	prismatic bars due to uniaxial load, Deformation of prismatic bars due to its self weight
	- 4 th -	2.3 Complex stress and strain Principal stresses and strains: Occurrence of normal and tangential stresses,
5 th	1 st	Concept of Principal stress and Principal Planes, major and minor principal stresses and their orientations, Mohr's Circle and its application to solve
	2 nd	problems of complex stresses, Yield stress, Ultimate stress, Breaking stress
	3 rd	Stresses In Beams and Shafts 3.1 Stresses In beams due to bending: Bending stress in beams – Theory of simple bending – Assumptions – Moment of resistance
	4 th	Equation for Flexure– Flexural stress distribution –
6 th	1 st	Curvature of beam – Position of N.A. and Centroidal Axis – Flexural rigidity – Significance of Section modulus
	2 nd	3.2 Shear stresses In beams: Shear stress distribution in beams of Rectangular Section
	3 rd	, circular and standard sections symmetrical about vertical axis.
	4 th	3.3 Stresses In shafts due to torsion: Concept of torsion, basic assumptions of pure torsion,
7 th	151	, torsion of solid and hollow circular
	2 nd	sections polar moment of inertia, torsional shearing stresses,
	3 rd	angle of twist, torsional rigidity, equation of torsion
	4 th	3.4 Combined bending and direct stresses: Combination of stresses, Combined direct and bending stresses,

uplood in webster

Principal 23

Olet (Polytechnic)

Jagatpur, Cuttack

,	1 st	Maximum and Minimum stresses in Sections, Conditions for no tension,
	2 nd	Limit of eccentricity, Middle third/fourth rule. Core or Kern for square.
8 th	3 rd	rectangular and circular sections, chimneys, dams and retaining walls
	4 th	4.1 Columns and Struts, Definition, Short and Long columns, End conditions,
	1 st	Equivalent length / Effective length, Slenderness ratio, Axially loaded short and long column,
	2 nd	Euler's theory of long columns, Critical load for Columns with different end conditions
9 th	3 rd	Types of loads and beams: Types of Loads: Concentrated (or) Point load, Uniformly Distributed load (UDL), Types of Supports: Simple support
	4 th	Problem practice
	1 st	Problem practice
10 th	2 nd	5.1 Roller support, Hinged support, Fixed support, Types of Reactions: Vertical reaction, Horizontal reaction,
10	3 rd	Problem practice
	4 th	5.1 Moment reaction, Types of Beams based on support conditions:
	1 st	Calculation of support reactions using equations of static equilibrium Problem practice
aath	2 nd	5.2 Shear force and bending moment in beams:
11 th	3 rd	Siled Force and Benging Moment: Signs Convention for S.E. and D.M.
	4 th	5.2 S.F and B.M of general cases of determinate beams with concentrated loads and udl only, Problem practice
12 th	1 st	Problem practice Problem practice
	2 nd	
12	3 rd	5.2 S.F and B.M diagrams for Cantilevers, Simply supported beams and
-	3	Over hanging beams, Position of maximum BM, Point of contra flexure,
	1 st	Relation between intensity of load, S.F and B.M.
aoth	2 nd	Problem practice
13 th		Problem practice
	3 rd 4 th	Problem practice
		6.1 Introduction: Shape and nature of elastic curve (deflection curve); Relationship between slope, deflection and curvature (No derivation),
	1 st	Importance of slope and deflection
14 th	2 nd	Problem practice
_	3 rd	Problem practice
	4 th	Problem practice 6.2 Slope and deflection of cantilever and simply supported beams under
	1 st	concentrated and uniformly distributed load (by Double Integration mathed Management
15 th	2 nd	method). Problem practice
	3 rd	Problem practice
1	4 th	Problem practice
	1 st	Problem practice
16 th	2 nd	7.1 Indeterminacy in beams, Principle of consistent
10	3 rd	deformation/compatibility, Analysis of propped cantilever
	4 th	fixed and two span continuous beams by principle of superposition, SF and
	1 st	BM diagrams (point load and udl covering full span)
-th	2 nd	Problem practice
17 th	3 rd	Problem practice
	4 th	Problem practice
	1 st	8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses8.1 degree of indeterminacy.
-	2 nd	8.1 stable and unstable trusses, advantages of trusses
18 th	3 rd	8.2 ANALYSIS OF TRUSSES, Agranges of trusses
-	4 th	8.2 ANALYSIS OF TRUSSES; Analytical method (Method of joint, Method of section)
	4	8.2 ANALYSIS OF TRUSSES; Analytical method (Method of joint, Method of section)

Selffy and the